
'I4-R9C- ABSTRACTION TM NUMERICAL PIETWOOS(U) MASSACHUSETTS INST 1/1~
OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB
M HALFANT ET AL OCT 87 AI-M-997 N88814-86-K-8188

UNCLASSIFIED F/G 12/5 ML
IIIIIIIIIIIII

EIIIIIIIIII

• Ullll&

'03

I
MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- I963-A

UNCLASSIFIED Opt FILE COM~
EC'Jajv C.ASS, 'cATION or T1iS PAGE fwlhe. Data Emnued)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

.m~,It REPORT NUMBER _J2. GOVT ACCESSION NO I. RECIPIENT'S CATALOG NUMBER
Y4 997

N 4 TIT LE£ (Ad 5 wb tf) S. TYPE O F REPORT & PERIOD COVEREO

Abstraction in Numerical Methods Memo

S. PERFORMING ORG. REPORT NUMiSER

0: 7. AUTHOR(s) 4. CONTRACT OR GRANT NUMIIIER()

i ' Matthew Halfant and Gerald Jay Sussman NO0014-86-K-0180

9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREA A WORK UNIT NUMBERS

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency October, 1987

1400 Wilson Blvd. IS. NUMUEROF PAGES

Arlington, VA 22209 18
14 MONITORING AGENCY NAME 6 ADDRESS(#(dl~eormet from Controelln f010.c) 1S. SECURITY CLASS. (o this roponr)

Office of Naval Research UNCLASSIFIED

.. ~. Information Systems

* Arlington, VA 22217 1sa. DIECLASS'ICATON/DOWNGRADING• ;- ;SCHEDULE

16. DISTRIUUTION STATEMENT (f Ihie RepePt)

Distribution is unlimited. D T FO--__ I&ELECTEI

17. DISTRIIUTION STATEMENT (of IN. abtract smqef.d in Blo¢ 0. It different from Rpoml)

10. SUPPLEMENTARY NOTES

None

pIt. KEY WORDS (Coe.linue o e0,ee00 ide It nooe..1ry nd fda151e 7 6F block nombl,)

Scheme, Abstraction, Programming Methodology, Richardson Extrapolation, LISP'.'\

20. AUISTRACT (ContinW* an roif 3 aid* It nocoodwy and fdonfiff 6F block nMb.r)

- - We illustrate how the libleral use of high-order procedural abstractions and

infinite streams helps us to express some of the vocabulary and methods of
%e- Inumerical analysis. We develop a software toolbox encapsulating the technique

of Richardson extrapolation, and we apply these tools to the problems of

IVi [numerical integration and differentiation. By separating the idea of Richardso

extrapolation from its use in particular circumstances we indicate how

L n numerical programs can be written that exhibit the structure
of the ideas from

-which they are formed. i.. . . • ,-">.'

DD IA",, 1473 EDITION O'1NV 6S CSOLETI UNCLASSIFIED
I00 61SECURITY CLASSIFICATION OF THIS PACE (When Date ifo

0J

MASSACHUSETTS INSTITUTF OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo 997 October 1987

Abstraction in Numerical Methods

Matthew Halfant and Gerald Jay Sussman

Abstract

We illustrate how the liberal use of high-order procedural abstrac-
tions and infinite streams helps us to express some of the vocabulary
and methods of numerical analysis. We develop a software toolbox en-
capsulating the technique of Richardson extrapolation, and we apply
these tools to the problems of numerical integration and differentia-
tion. By serarating the idea of Richardson extrapolation from its use
in particular circumstances we indicate how numerical programs can
be written that exhibit the structure of the ideas from which they are
formed.

Keywords: Scheme, Abstraction, Programming Methodology, Richard-
son Extrapolation, LISP.

This report describes research done at the Artificial Intelligence
e, Laboratory of the Massachusetts Institute of Technology. Support for
.', the Laboratory's artificial intelligence research is provided in part by

the Advanced Research Projects agency of the Department of Defense
under Office of Naval Research contract N00014-86-K-0180.

Accesio' For
NTIS CUA&I I
,)TIC TA, l
Unanr, , eri [.

13Y1
leiI

0 r): f1%:

Abstraction in Numerical Methods
Matthew Halfant and Gerald Jay SussmanI

Artificial Intelligence Laboratory

and
Department of Electrical Engineering and Computer Science

Massachusetts Institute of TechnologyI

Abstract

We illustrate how thc- !iberal use of high-order procedural abstrac-
tions and infinite streams helps us to express some of the vocabulary
and methods of numerical analysis. We develop a software toolbox en-
capsulating the technique of Richardson extrapolation, and we apply
these tools to the problems of numerical integration and differentia-
tion. By separating the idea of Richardson extrapolation from its use
in particular circumstances we indicatc how numerical programs can
be written that exhibit the structure of the ideas from which they are
formed.

A numerical analyst uses powerful ideas such as Richardson extrapolation
for organizing programs, but numerical programs rarely exhibit the structure
implied by the abstractions used in their design. It is traditional practice in
the domain of numerical methods for each program to be hand crafted, in
detail, for the particular application, rather than to be constructed by mixing
and matching from a set of interchangable parts. Such numerical programs
are often difficult to write and even more difficult to read.

In this paper we illustrate how the liberal use of high-order procedural
abstractions and infinite streams helps us to express some of the vocabulary
and methods of numerical analysis. We develop a software toolbox encapsu-
lating the technique of Richardson extrapolation, and we apply these tools to
the problems of numerical integration and differentiation. By separating the
idea of Richardson extrapolation from its use in particular circumstances we

indicate how numerical programs can be written that exhibit the structureI
I of the ideas from which they are formed.

B

0

Figure 1: IABI =S,,, JACJ = CBI =S-2,

A first example: Archimedean computation of r

We begin with a playful example: approximating the value of 7r by the
method of Archimedes. Let Sn be the length of one side of a regular n-

sided polygon inscribed in a unit circle. As n approaches infinity, the semi-
perimeter P, = nSn/2 approaches 7r. Applying the Pythagorean Theorem to
right triangles ACD and ADO from figure 1 we derive the relation:

S2. = 2- V4 S2.n

Equivalently,

S2n
=

2+ 4-S

the latter form being preferred because it avoids the subtraction of nearly
equal quantities as S,, -- 0. In Scheme [4] (the dialect of Lisp we use) we
can write the transformation from S,, to S2n as:

(define (refine-by-doubling s) ; s is a side
(s (sqrt (+ 2 (sqrt (- 4 (* s s)))))))

Starting with a square (S4 is simply v/2), we want to form the sequence

of side lengths 4 S8, S16,'" ". Such sequences are naturally represented with
streams-effectively infinite lists whose terms are evaluated only on demand

S 2

1 & 1 1 1 1 1

(for a discussion of streams see [1]). We use a stream generator to produce
the orbit of a starting value under repeated application of a transformation
next:

(define (stream-of-iterates next value)
(cons-stream value

(stream-of-iterates next (next value))))

Now we can define the stream of side lengths:

*.r.%2 (define side-lengths
(stream-of-iterates refine-by-doubling (sqrt 2)))

and the corresponding stream of numbers of sides:

* (define side-numbers

(stream-of-iterates (lambda (n) (* 2 n)) 4))

Combining these termwise using map-streams lets us form the sequence of
semi-perimeters P 4, P8 , P16," "., whose limit is 7r:

(define (semi-perimeter length-of-side number-of-sides)
S." (* (/ number-of-sides 2) length-of-side))

(define archimedean-pi-sequence
(map-streams semi-perimeter side-lengths side-numbers))

We can look at the resultF:

(print-stream archimedean-pi-sequence)

S==> 2.82842712474619

3.06146745892072

3.12144515225805
3. 13654849054594

.W'

3.14033115695475
3.14127725093277 ; term 6

3.14159265358862 ; term 20

3.14159265358950
3. 14159265358972
3. 14159265358977

03r',

.p.-.

- ---. = - ~, - wrRE r Kl.r n l I P - WrW. V .WV UTM.I W T-iwl 1Zvi g , an an -m~

3. 14159265358979
3. 14159265358979

3.14159265358979

the As expected, the sequence converges to 7r, but it takes 24 terms to reach
the full machine precision. Imagine poor Archimedes doing the arithmetic

by hand: square roots without even the benefit of our place value system!
He would be interested in knowing that full precision can be reached on the
fifth term, by forming linear combinations of the early terms that a!Pow the

limit to be seized by extrapolation.
To understand how this is done, rewrite the expression for the semi-

2. perimeter P,, by using the Taylor series for S, = 2sin (7r/n) (see figure 1):
0

P,, = 2) S),

= (n/2)(2sin(rr/n))
= 7r + A/n 2 + Bin' +..

where A and B are constants whose values aren't important here. As n gets
larger, it is the A/n -term that dominates the truncation error--the differ-gence between r and P, for finite n. Whenever we double n, this principal

component of the truncation error is reduced by a factor of 4; that knowl-

edge allows us to combine successive terms of the sequence ... P, P2,• to

eliminate entirely the effect of this quadratic term.
. Specifically: multiply P2n by 4, so that its 1/n 2 term matches that of Pn;

then subtract P, to eliminate this term; after some slight rearrangement we
get

4P2 ,-P, B
3 4n 4

The accelerated sequence P,, is defined by the expression on the left; it

approximates 7r with a truncation error that goes to 0 like 1/n4 , which is
much faster than before.

* We could revise our program to compute the sequence P, P8, P 6 , ",and

demonstrate that its convergence is more rapid than that of P 4, P 8 , P16, ".

However, this acceleration scheme is quite general, and we prefer to develop
it away from the present context. Afterwards, we can apply it to th.s and
other pursuits.

04

IN-

The method of Richardson extrapolation

N, Instead of phrasing our argument in terms of a parameter n that gets
larger through successive doubling, we'll follow the convention of using a
positive quantity h that approaches 0 through successive divisions by 2. In
the example above, we need only make the identification h = 1/n. Sometimes
n, sometimes h, will be the more natural, and we can formulate the problem
however we prefer. Typically h will arise as a step size.

Now imagine that we seek the limit, as h -- 0, of some function R(h),
* and that we pursue it by constructing the sequence R(h), R(h/2), R(h/4),..-.

We suppose that each expression R(h) represents the limiting value A with
a truncation error that is analytic at h = 0:

* R(h) = A + Bhi' + ChP + DhP3 +...

The exponents P1, P2, P3," may well be just the natural numbers 1,2,3,.;
but they might represent a subsequence-for example, the even numbers,
as they did in the Archimedean example above. We assume this sequence
is known. On the other hand, we need not know in advance the values of
A, B, C,-; indeed, our whole purpose is to determine A.

Knowing the truncation error as a power series in h allows us to eliminate
the effect of the dominant term: we do this by subtracting the appropriate
multiple of R(h/2) from R(h):

,f. R(h) - 2P'R(h/2) = (1 - 2p')A + Cih P2 + DihP3 +...

or

R'(h) =2P- R(h/2) - R(h)
R'(h) - 1

["= A + C ~h P2 + D h P + ' ' "

We view this as a transformation applied to (adjacent terms of) the se-
quence

[R(h), R(h/2), R(h/4),...

to produce a new sequence

R'(h), R'(h/2), R'(h/4),.••

I.., 5

.jN.

s2i t

s3 t2 ul
s4 t3 u2 v1
s5 t4 u3 v2 w1

Figure 2: The Richardson Tableau

whose truncation error is now dominated by the term containing h2. That
is, the R' sequence converges faster than the original.

Now we come to Richardson's great idea: since R' has a truncation error
dominated by C2hP, we can apply the same idea again:

R"1(h) = 2P2R'(n/2) - R'(h) - A + D 3h
P3 + ...

R"(h)P2 - 1

yielding a sequence R"(h), R"(h/2), R"(h/4),... whose truncation error now
has the dominant term DAhP 3 . And so on. Given the seqLence P1,P2,P3, ",

one can form a tableau (see figure 2) in which the original sequence appears
as the vertical s column at the left; to the right is the derived t column; the
u column is derived from t as t is from s, and so on. All columns converge to
the same limit, R(O+), but each converges faster than its predecessor. Thus,
s converges with an error term O(hPl)-that is, of order hP'; t converges
with error term O(hP2); u has error term O(hP3) , and so on.

By the way, if the sequence PI,P2,P3," is not known in advance, one
can take the conservative approach of assuming it to be the natural number

sequence 1, 2, 3,-..; this leads at worst to the inefficiency of creating adjacent
I. , :columns with the same error order. Alternatively, the appropriate exponent

p for a given column can be inferred numerically from the early terms of that
column; we have done that in our library, but do not pursue it here.

1 The Richardson Toolbox

Having sketched the basic ideas, we develop Richardson extrapolation as
a set of tools that can be applied in diverse contexts. First, if we don't already
have the sequence R(h), R(h/2), R(h/4),... we need to be able to make it,

-.5. 6

"M

0

given R and h. The name make-zeno-sequence derives from the suggestive

connection to successive halving in the statement of Zeno's paradox.

(define (make-zeno-sequence R h)
(cons-stream (R h) (make-zeno-sequence R (/ h 2))))

The basic operation of accelerating the sequence requires that we know
the order of the dominant error term-r. Accelerat e-zeno -sequence takes
this order as an explicit argulent.

(define (accelerate-zeno-sequence seq p)
(let* ((2-p (expt 2 p)) (2-p-i (- 2-p 1)))
(map-streams (lambda (Rh Rh/2)

(/ (- (* 2-p Rh/2) Rh)
02-p-i))

seq
- (tail seq))))

We can get our hands on the full tableau. In this case we iterate the
S"application of accelerate-zeno-sequence to make an infinite sequence of

V,

accelerated sequences. In forming the full tableau, we make the simplifying
assumption that the exponent sequence is arithmetic:

iPi, P2, P3,'"} j{7, p-+q, p+- 2 q, p+3q,-..}

Hence it can be specified by the initial order p and an increment q. In typical
cases, q is 1 or 2.

The procedure make-zeno-tableau accepts as arguments the original
Zeno sequence along with the characuerizing order p and increment q; it
returns the sequence of accelerated sequences.

(define (make-zeno-tableau seq p q)
(define (sequences seq order)

(cons-stream seq
* (sequences (accelerate-zeno-sequence seq order)

(+ order q))))
(sequences seq p))

7

%

., -.S.

0.

Wuk - - - - . - W UJ' nil 16 L-. IVV'YVV' 'J. W"M MU~

Finally, the procedure first-terms-of-zeno-tableau produces a se-

quence sl, tl , ul, v1, wl, . of t he first terms taken from each of the

accelerated sequences. The sequoiwee of first terms converges at, a remarkable

rate: not only are the first n ternis of the original truncatioi-eiror :eries
removed, but the remainder is effectively divided by 2 n

n 2
,1 (see appendix for

details).

(define (first-terms-of-zeno-tableau tableau)
(map-streams head tableau))

(define (richardson-sequence seq p q)
(first-terms-of-zeno-tableau (make-zeno-tableau seq p q)))

Archimedes revisited

Before proceding any further, let's see how well this does on our original
example. We apply richardson-sequence to the archimedean-pi-sequence

previously computed and examine the result:
w

(print-stream (richardson-sequence archimedean-pi-sequence 2 2))

S=> 2.82842712474619
3. 13914757031223
3. 14159039312994

3. 14159265328605
3. 14159265358979

3. 14159265358979
3. 14159965358979

0..

As indicated earlier, full precision is reached on the 5th term (although
we need to compute the 6th to know that we've reached it, and may want

to compute the 7th just to be sure). What remains now is to establish some
algorithmic means for assertaining when a limit has been reached.

Completing and applying the Richardson toolbox

Now that wt- have the idea under control, we must fill in our Richardson
toolbox to allow its application in a variety of situations. We need ways of

8 '

J.%

,-.
0

extracting our best estimate of the limit from a sequence. One simple crite-

rion that may be used is this: We declare convergence when two consecutive
terms are sufficiently close.

Alas, the notion of sufficient closeness is slightly sticky: relative accuracy
is what's generally wanted, but that fails in the case of a sequence with limit
0. One way around the difficulty is to use the metric

I", - h2l
(1hI + 1h21)/2 + 1

to measure the distance between two numbers h, and h2:

(define (close-enuf? hl h2 tolerance)
(<= (abs (- hl h2))*(, .s

tolerance

(+ (abs hl) (abs h2) 2))))

This criterion amounts to relative closeness when the numbers to be corn-
0. "pared are large, but makes a graceful transition to absolute closeness when

the numbers are much smaller (in magnitude) than 1.
Using this or any similar predicate, we construct our limit detector:

C... (define (stream-limit s tolerance)
(let loop ((s s))

(let* ((hi (head s)) (t (tail s)) (h2 (head t)))
(if (close-enuf? hl h2 tolerance)

h2

(loop t)))))

* A more cautious version of the limit detector would require close agree-
ment for three or more successive terms (we've been bitten ourselves by
accidental equality of the first two terms of a sequence). Actually, there's
another modification we'll be forced to make very shortly: we'll need an
optional final argument m that forbids stream-limit from examining more

*. than the first m terms of the sequence before returning an answer.
Given stream-limit, the following combination proves useful for finding

. the Riclhardson limit of a function. The arguments ord and inc are our
previous p and qJ.

101

N4-

,.;.

(define (richardson-limit f start-h ord inc tolerance)

(stream-limit
(richardson-sequence (make-zeno-sequence f start-h)

ord
inc)

tolerance))

We are ready now to apply our t ools to a sigiificani cxample.

Numerical computation of derivatives

The following higher-order procedure takes a procedure that computes a
numerical function and returns a procedure that calculates an approximation

to the derivative of that function:

* (define (make-derivative-function f)

(lambda (x)

(let ((h .00001))

((- (f (+ x h)) (f (- x h)))
2 h))))

Notice the ad huc definition of h. We are walking the line between trunca-
W", tion error (not having h small enough for the difference quotient to adequately

%. approximate the derivative) and roundoff error (having h so small that the
subtraction of nearly equal quantities loses all accuracy in the answer). The
optimal h depends both on x and on the number of digits carried by the ma-

.... chine, but even with this h we'll generally lose about a third of our significant
digits (we'd lose half of our digits had we used the forward, rather than the

4.., centered difference quotient). Of course we're hoping that Richardson will

allow us to do better.

It's instructive to experiment with letting h go to 0. Given f, x, and h, we
produce a stream of difference quotients in which h is successively reduced

by a factor of 2.

(define (diff-quot-stream f x h)

• (cons-stream (U (- (f (+ x h)) (f - x h))) 2 h)

(diff-quot-stream f x (I h 2))))

We apply this to the estimation of the derivative of the square root at 1
(exact answer is 0.5).

10

(print-stream (diff-quot-stream sqrt 1 .1))

==> 0.500627750598189

0.500156421150633
0.500039073185090

0.500009766292631
0.500002441447984

0.500000610354192
0.500000152587994

0.500000038146951

0.500000009536734
0.500000002384411

1" 0.500000000595833

* 0.500000000148475
0.500000000038199

0.500000000010914 14th term
0.500000000010914

0.499999999974534

0.499999999992724

0.500000000029104

0.499999999883585

0.500183105468750 ; 40th term

0.500488281250000
0.499267578125000

0.498046875000000

0.502929687500000
0.507812500000000

0.488281250000000

0.468750000000000

0.546875000000000
0.625000000000000

0.312500000000000 ; 50th term

0.

0.

0.

We observe that the error diminishes steadily until the 14th term is

rcach(d; after this, the error bil(Is back up in a somewhat erratic man-

ner until, after the 50th term, we arc left with a steady parade of zeros.
This problem results from the subtraction of nearly equal quantities in the
numerator of the difference quotient: we lose more and more sigiificant fig-
ures until h becomes so small that x - h and x - h are equal to full working
precision, after which only 0 quotients can be returned.

Hence we are in a race between truncation error, which starts out large
and gets smaller, and roundoff error, which starts small and gets larger.
Richardson helps the situation by creating new sequences in which the trun-
cation error dimishes more rapidly, which is just what we need. To be more
precise, we need to look at how the roundoff error works in this example.

Any real number x, represented in the machine, is rounded to a value
x(1 + e), where e is effectively a random variable whose absolute value is on

* the order of the machine epsilon, c: that smallest positive number for which
1.0 and 1.0 + I can be distinguished. For IEEE double precision (as used, for
example, by the 8087 numeric coprocessor), c = -= 1.11 x 10'. Now
if h is small, both f(x + h) and f(x - h) have machine representations in
error by around f(x)e; their difference suffers an absolute error of this same
order. Since the difference f(x + h) - f(x - h) should equal around f'(x)2h,
the relative error is of the order

I__ f Wf
e2hf'(x)I

The relative error of the difference quotient is essentially the same as that, of
its numerator, the denominator being just 2h which is known to full precision.

From the above expression, we see that the relative error due to roundoff
basically doubles each time h is halved-a result that is easy to see directly
in terms of the binary representation of x + h: dividing h by 2 shifts the
binary representation of h one position to the right; but the presence of x
nails down the high order bits of x + h, whence the low order bits of h fall
off the end, one per iteration.

Suppose we want to cornmpute the derivative of the square root at 1 with
* a relative error of at most t0 -i3, and starting with h = 0.1. We need to

estimate the initial relative roundoff error; the preceding formula must be
modified slightly for this purpose. First, the denominator is actually f(x +
h) - f(x - h), which is what we must use (it was written above as 2hf'(x)
only to show the trend as h gets small). Second, we want to ensure that

12

0

the predicted relative roundoff error is at least a positive multiple of the

machine epsilon: hence we take the next-highest-integer of the absolute-value
subexpression:

1 +floor(V)=10

Thus, the initial relative roundoff error is 10 roundoff units, or 10c = 1.1 x
10'5. Since the roundoff error roughly doubles at each iteration, we ask:
How many times can 1.1 x 10'5 be doubled before reaching 1013?

1.1 x 10-152 n< 10
- 13

so
log (10-13/1.1 x 10i) 6.5

* ~~ log 2 .

Hence if we restrict ourselves to at most 6 terms past the first (for a total of
7 terms), we can be reasonably sure our data is uncontaminated by noise at
the level of interest. This makes accelerated convergence really crucial: we

1. have to reach our limit quickly or not at all.
Here's a modified version of stream-limit that accepts an optional i nal

parameter m, designating the maximum number of stream terms to examine
in the search for the limit. If m is reached without convergence, we just

- return the final term as a best guess; a more professional approach would

be to return some kind of an error code, along with the best guess and an

estimate of its truncation error.

(define (stream-limit s tolerance . opts) ;opts = optional args
(let ((M (if (null? opts) 'nomax (car opts))))

0 (let loop ((s s) (count 2))

(let* ((hl (head s)) (t (tail s)) (h2 (head t)))
(if (close-enuf? hl h2 tolerance)

h2
(if (and (number? M) (>= count M))

h2
(loop t (+ count I))))))))

The revised version of richardson-limit is simply:

~ /~.13

A ."

(define (richardson-limit f start-h ord inc tolerance opts)

(stream-limit
(richardson-sequence (make-zeno-sequence f start-h)

ord
mc)

tolerance

(if (null? opts) 'nomax (car opts))))

We can now define our derivative estimator in the following natural way. (In

practice, the routine as shown admits of several pitfalls: hi becomes 0 if x is;
delta mi~ght end up as 0 by chance; and possibly some other bad things we
haven't thought of. It will serve for purposes of illustration here.)

[0 (define rderiv
(lambda (f tolerance)

(lambda (x
(let* ((h (* 0.1 (abs x)))

(delta (- (f (+ x h)) (f p i x.h))))

(roundoff (* *machine-epsilon*
(+ 1 (floor (abs UI (f x) delta))))))

(n (floor (U (log (tolerance roundoff))
(log 2)))))

(richardson-limit (lambda (dx)

; (elta(- ((+ h))(f (- x dh)))

(f (- x dx)))
(* 2 dx)))

h

2
2

* tolerance

(+ n 1))))))

N Notice that the ord and inc arguments are both 2: the truncation error
involves only even powers of h. Had we used the forward difference quotient,

* (f(x + h) - f(x))/h, then all powers of h would arise, and ord and inc would
both be 1. These results follow easily from the Taylor expansion of f.

Applied to the square root example, we find:

((rderiv sqrt le-13) 1) => 0.500000000000016

A 11

which shows a relative error of 0.32 x 10 - 13.Further testing shows that the
'N relative error of 10' 3 is generally met.

We pass now to another significant application, in which roundoff error
is happily not an issue.

Numerical integration by Romb erg's method
Given a function f that behaves nicely (i.e., has two continuous deriva-

tives) on a finite interval [a, b], we seek numerical approximations to the
definite integral of f from a to b. The plan of attack is to divide [a, b] into
some number, n, of subintervals each of length h = (b - a)/n. We apply
the trapezoidal rule to compute an approximating sum S,; we then form a
sequence of approximaticns by repeatedly doubling n (equivalently, halving
h) and use Richardson extrapolation on the result.

We get the ball rolling with the following procedure. It takes f, a, and b,
and returns a procedure that, given n, computes Sn:

(define (trapezoid f a b)
(lambda (n)

(let ((h ((- b a) n)))
(let loop ((i 1) (sum (I (+ (f a) (f b)) 2)))

(let ((x (+ a (* i h))))

(if (< i n)
(loop (+ i I) (+ sum (f x)))
(* sum h)))))))

We use this to estimate 7r:

4% (define (f x) (/ 4 (+ 1 (* x x))))

(define pi-estimator (trapezoid f 0 1))

(pi-estimator 10) > 3.13992598890716
(pi-estimator 10000) > 3.14159265192314

It is shown in standard texts (for example [2] or [3]) that, for f in C2 [a, b]
as we've assumed, the truncation error involves only even powers of h. Hence

* we proceed:

(define (pi-estimator-sequence n)
(cons-stream (pi-estimator n)

(pi-estimator-sequence (* 2 n))))

15

M IM

(print-stream
(richardson-sequence

(pi-estimator-sequence 10) 2 2))

3. 13992598890716
3. 14159265296979

3. 14159265362079
3. 14159265358979

The convergence rate is very encouraging-we get full machine accuracy
in only 80 evaluations of the original function f--but there is considerable
redundant computation here. Every time we double the number of points
we reevaluate the integrand at the old grid points; this is a lamentable in-
efficiency in cases where f is expensive to compute. Romberg's method of
quadrature, to which we now proceed, is a variation of the above that avoids
unnecessary recomputation of f.

We begin with a utility procedure that computes a sum of terms f(i),
where i takes unit steps from a to (not-greater-than) b:

(define (sigma f a b)
(let loop ((sum 0) (x a))
(if (> x b)

sum

(loop (+ sum (f x)) (+ x 1)))))

We examine how the sum S2n is related to Sn. In the former, we employ

a partition of [a, b] into 2n equal parts, having grid points at xi = a + ih,
with h = (b - a)/2n, and i going from 0 to 2n. The even-index terms of
this point sequence comprise the entire point sequence for Sn; in computing

S2n, we need only evaluate f at the odd indices, the others being already
incorporated into S,:

*s n

S2 ,,= S. + h f (X2i1)

This recursion is the basis of the following procedure, which generates the
sequence S 1 , S 2 , S 4 ,".

16

--*

V (define (trapezoid-sums f a b)

(define (next-S S n)

(let* ((h (I (- b a) 2 n))
(fx (lambda(i) (f (* a (* (+ i i -1) h))))))

(+ (S 2) (* h (sigma fx 1 n)))))
(define (S-and-n-stream S n)
(cons-stream (list S n)

(S-and-n-stream (next-S S n) (* n 2))))
(let* ((h (- b a))

(S (* (I h 2) (+ (f a) (f b)))))
(map-stream car (S-and-n-stream S 1))))

We arrive at the more economical version of our previous method:

(define (romberg f a b tolerance)

(stream-limit
(richardson-sequence (trapezoid-sums f a b)

2

2)
fe tolerance))

Conclusion

We have shown how a classical numerical analysis method, Richardson
extrapolation, can be formulated as a package of procedures that can be used

,* . as interchangable components in the construction of traditional applications
such as the estimation of a derivative and Romberg quadrature. Such a
formulation is valuable in that it separates out the ideas into several inde-

.pendent pieces, allowing one to mix and match combinations of components
* in a flexible way to facilitate attacking new problems. Clever ideas, such as

Richardson extrapolation, need be coded and debugged only once, in a con-
text independent of the particular application, thus enhancing the reliability
of software built in this way. Roylance [5] has similar goals. He constructs
high-performance implementations of special functions, abstracting out re-

- ~current themes such as Chebyshev economization.
The decompositions we displayed have used powerful abstraction mech-

anisms built on high-order procedures, interconnected with interfaces orga-
nized around streams. The programs were implemented functionally-there

0

K' 17

Ie

_2 1

W

were no assignments or other side-effects in any of our example programs.
Because functional programs have no side effects they have no required order
of execution. This makes it exceptionally easy to execute them in parallel.

A program is a communication, not just between programmers and com-
puters, but also between programmers and human readers of the program;
quite often, between the programmer and him/herself. A program describes,
more or less clearly, an idea for how to obtain some desired results. One
power of programs is that they allow one to make the knowledge of methodz
explicit, so that methods can be studied as theoretical entities. Traditional
numerical programs are hand crafted for each application. The traditional
style does not admit such explicit decomposition and naming of methods,
thus losing a great part of the power and joy of programming.

_ Appendix: Convergence rate of the first-terms sequence

:",- We offer here the mathematical justification for claims made earlier about
the rate of convergence of the sequence of first terms returned by the proce-
dure richardson-sequence.

As for hypotheses, we suppose that R is a function analytic in a disk that
contains h as an interior point; thus we have an expansion

00

R(h) = A + ERh ',
i= 1

where {P ,P2," "} is an increasing sequence of positive integers. We assume
the pi are chosen so that no Ei is 0. Let us identify R with R111; the sequence
of first terms is given by

S R { 11 (h),R[2
](h),. ,R n(h),}

where for all n > 0,

2n 1

* This is the operation concocted to remove the dominant error term at
each stage; thus we know

00

:" S. =- Rc h) - A + Eilh~i.
P% ti.=n

18

p'l

Since it is possible that the coefficients El" grow large as n - oo, we cannot
.,, immediately conclude that S, converges to A or even converges at all. We

settle this question by a straight-forwa.rd computation.
To begin with, we have

' 1 ' 1

S2 = A+ - Ei(2n,- , 1)hP
2P- i=2

and

.- ~ 100
S3 A+ (p 1) 1'h,';

(2P, - 1)(2P2 - 1) iE 2-P 1)(2P-P

* the general case is seen to be

A5.: +.+ =A+ 2.,- 1 E Eii(1) Ih v i .

i'e"•=1 i=n+l j=l PiP

- The term appearing in braces is less than 1 in magnitude; this gives us

the estimate
~~~IS.+, - Al < 2, 1: j] EihP'j"

2sIi=n+l

% Since R is analytic at h, the summation part

00

i=n+l

converges monotonically to 0 as n - cc. The product appearing in paren-
.theses is estimated as follows.

n .

1 )1
., 1 2T _ - 2- (1 - 2- , "

r*, Using the inequality, valid for x E [0,2 7]

1 <+ 2x,

0x

19



6r

C,..'. i

we see that the product above is dominated, in magnitude, by

I n 2 1 00 9 1 C 1 K
2° 1n + - , .11 (1 + 9 P,)  2  I + Y), 2-a

where K = F1= 0 (1 + 2
- i) is an absolute constant.

Thus we have shown that the absolute error with which S,+1 approxi-
mates the limit A is less than

Klin
2an

In the cases cited in our discussion, {p2 } is an arithmetic progression {p +

(i -)q}; hence

Sn(n -1)
, = -p + (-1)q) = np + 2i=1 2

This justifies our earlier claim.

References

[1] H. Abelson and G.J. Sussman, with J. Sussman. Structure and Interpretation
of Computer Programs., MIT Press, Cambridge MA, 1985.

[2] G. Dahlquist and A. Bjork. Numerical Methods., Prentice-Hall, 1974.

[3] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical

Recipes: The Art of Scientific Computing. Cambridge University Press, 1986.

[4] J. Rees and W. Clinger, et. al. Revised3 Report on the Algorithmic Language
Scheme. ACM SIGPLAN Notices, Vol. 21, no. 12. Dec 1986, pp. 37-79. also
MIT Al Memo 848a, September 1986.

[5] G. L. Roylance. Expressing Mathematical Subroutines Constructively. MIT
Al Memo 999, November 1987.

2I
20



0

0
aI'.

0

* I.

0

0

*

I
0


